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Abstract. The singlet stability of symmetry adapted (SA), restricted Hartree-Fock (RHF) solutions, and
the implied symmetry breaking for several planar, π-electron systems, is investigated using the semiempir-
ical Pariser-Parr-Pople Hamiltonian in the whole range of the coupling constant. We focus here on highly
symmetric cyclic polyenes C10H10 and C14H14 and their various distorted analogues of lower symmetry,
in particular on the perimeter models of naphthalene and anthracene (p-naphthalene and p-anthracene)
modeling the so-called [n]-annulenes. Relying on earlier results for general systems with conjugated double-
bonds, we explore the character and properties of both the SA and broken-symmetry (BS) RHF solutions
for these systems and relate their behavior to those of highly symmetric cyclic polyenes and correspond-
ing polyacenes. In this way we are able to provide a better understanding of the spontaneous symmetry
breaking in these systems at the Hartree-Fock level of approximation.

PACS. 31.15.bu Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods)

1 Introduction

The Thouless stability conditions [1] for the solutions of
the Hartree-Fock (HF) equations in the case of closed-shell
atomic and molecular systems have been studied in refer-
ence [2]. For a spin-independent electronic Hamiltonian
these stability conditions can be significantly simplified
and the two types of eventual instabilities can be classi-
fied as the singlet and nonsinglet (or triplet) ones. This
can be understood if we realize that a nonsinglet instabil-
ity does not impose double-occupancy of spatial orbitals,
thus allowing the use of different orbitals for different spins
[DODS or unrestricted HF (UHF) approximation]. In such
a way a substantial decrease in the variational energy
may be achieved as a result of spin-polarization effects.
Consequently, this type of instability is always found in
open-shell systems [3]. In contrast, the singlet instabil-
ity is generally related to the breaking of spatial symme-
try, represented by the invariance point group of the fixed
nuclear framework characterizing the Born-Oppenheimer
electronic Hamiltonian.

Taking into account only the one-electron component
of the electronic Hamiltonian (Hückel approximation),
the single (antisymmetrized) product wave function will
be automatically both spin and space symmetry adapted
(SA), and any admixture of virtual orbitals to any of the
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occupied ones will only increase the energy of the sys-
tem [4]. However, when the interelectronic interaction, i.e.
the two-body part of the Hamiltonian, is turned on, the
SA solution may no longer represent the absolute mini-
mum or, in fact, even a local minimum in the variational
space considered. Thus, the interplay between the one and
two-body components of the Hamiltonian determines the
stability of the SA solution: the more dominant the one-
body component becomes, the less likely the SA solution
will be unstable. The presence of a singlet instability of a
SA solution then implies the existence of a broken sym-
metry (BS) pure singlet solution that has a lower energy
than the SA one. We recall that this phenomenon repre-
sents an example of the so-called “symmetry dilemma” of
Löwdin [5].

The HF energy and equations can be obtained as a so-
lution of HF equations, which represent the necessary and
sufficient conditions for the vanishing of the first variation
δ(1)E(Φ) of the mean energy functional

E(Φ) =
〈Φ|H |Φ〉
〈Φ|Φ〉 , (1)

in the variational space spanned by the determinantal
wave functions |Φ〉

Φ =
1√
N !

det ||φ1, φ2, ..., φN ||, (2)

where φi, (i = 1, · · · , N) designate orthonormal molecular
spin-orbitals.
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In general, the mean energy hypersurface E(Φ), equa-
tion (1), defined on a manifold (2), may posses many sta-
tionary points characterized by the vanishing first varia-
tion δ(1)E(Φ), which may be associated with various HF
solutions. Of course, the vanishing of the first variation
δ(1)E(Φ) only guarantees that the solution corresponds to
some stationary point on the energy hypersurface and, in
fact, need not represent even a minimum (local or global).

The number and the character of HF solutions de-
pends on the variational manifold to which the trial wave
function belongs. Typically, this manifold consists of wave
functions possessing the (spin and space) symmetry im-
plied by the symmetry of the Hamiltonian. The result-
ing solutions are then referred to as the SA restricted HF
(RHF) solutions. Of course, the imposition of such sym-
metry constraints on the variational problem for E(Φ),
equation (1), can only raise the variational energy. By al-
lowing broken symmetry (BS) solutions, the upper bound
to the energy can be improved. This fact is the essence of
the above mentioned symmetry dilemma of Löwdin.

The concept of a stability of HF solutions was first in-
troduced by Thouless [1], who considered the second vari-
ation δ(2)E(Φ) of the mean energy functional (1), and for-
mulated general stability conditions. Thus, a HF solution
corresponds to a (local or global) minimum if δ(2)E(Φ) >
0. Since δ(2)E(Φ) can be expressed as a quadratic form
in terms of suitable variational parameters, the stability
conditions may be characterized by an associated eigen-
value problem. A stable solution is then obtained if all
the eigenvalues of the stability problem are positive, while
one or more negative eigenvalues indicate a presence of
the instability, which in turn implies the existence of one
or more BS HF solutions with lower energy than the SA
one. A detailed derivation of singlet, triplet or more gen-
eral stability conditions can be found in references [2,3,6]
and references therein (for a review see Refs. [7–9]).

It should be stressed that the energy lowering due to
a singlet instability is generally much smaller than the
energy lowering implied by a triplet instability. While the
triplet instabilities are rather common, at least for the sys-
tems with stretched chemical bonds, the singlet instabili-
ties are much less frequent and represent, in fact, a rather
surprising phenomenon. Their physical or chemical inter-
pretation is far from being straightforward. Yet, at the HF
level, a broken space-symmetry HF solution that is asso-
ciated with a singlet instability of the SA RHF solution
invariably implies the tendency of the (otherwise frozen)
nuclear framework to distort accordingly. In some cases
this distortion persists even at the post-HF correlated level
(see, e.g., Ref. [10]), while in other cases this tendency is
artificial and is overcome when a better approximation is
used (e.g., Ref. [11]; see also Ref. [8]). This phenomenon
may be regarded as an example of a spontaneous symme-
try breaking in molecular systems, analogously as in the
low-density electron gas or in the spontaneous magnetiza-
tion in the infinite ferromagnets. We recall that in the case
of atoms, the breaking of spherical symmetry indicates a
tendency towards autoionization or, in general, a physical
instability of a given system [12,13].

The singlet unstable RHF solutions have been found
in a number of molecular systems at both semiempirical
and ab initio levels (for an overview, see Refs. [8,9]). A
number of seemingly hypothetical structures does actu-
ally exist and has been the subject of many experimental
investigations (such as polyacetylene films, alkali metal
and gold nanowires, metal clusters etc.).

The above outlined stability problem is, of course, per-
tinent to any variational solution that imposes constraints
on the variational wave function, be they of a symme-
try or other nature. Thus, the same kind of spin and/or
space symmetry breaking also arises in nowadays widely
used density functional theory (DFT), (using either Kohn-
Sham (KS) or local density approximation (LDA), see,
e.g., Refs. [14–17]), be it applied to molecular electronic
structure [18,19], solid state [15,16,20] or other systems
(such as metal clusters [15] or quantum dots [17,21]). In-
deed, a general classification of HF instabilities due to
Fukutome [6] applies to DFT solutions as well [22]. The
presence or absence of instabilities in DFT is very much
dependent on the employed functional. The tendency to-
wards instabilities is, generally, less pronounced in DFT
than in the standard HF approaches, since it implicitly
accounts for correlation effects [19].

In this paper we wish to address the phenomenon that
can be loosely characterized as an “approximate” sym-
metry breaking, namely the tendency of the charge den-
sity waves (CDWs) that arise due to the symmetry break-
ing in highly symmetric systems (such as cyclic polyenes
or infinite linear metals) to persist even in similar sys-
tems of lower or no spatial symmetry. For this purpose
we consider cyclic polyenes CNHN with a nondegener-
ate ground state, N = 4ν + 2, and their distorted ver-
sions, in particular π-electron models of the so-called [n]-
annulenes, which may also be viewed as the perimeter
models (or p-models for short) of aromatic hydrocarbons,
in our case of linear polyacenes. For easier reference, as
well as to emphasize the model nature of the considered
systems, we refer to the latter as p-polyacenes (specifi-
cally, p-naphthalene and p-anthracene, the letter “p” in-
dicating the “perimeter” model of these systems). Thus,
starting with highly symmetric cyclic polyenes C10H10 and
C14H14, forming a regular N -gon (N = 10 and 14), whose
HF solution is fully determined by their DNh symmetry
group, we systematically deform the nuclear framework
while preserving the C–C bond lengths, until we reach
the corresponding p-polyacenes having the D2h symme-
try. The basic qualitative observations described below
for p-naphthalene and p-anthracene have been extended
to much larger p-polyacenes, as well as to other aromatic
hydrocarbons with D1h, D3h or D6h symmetry, including
the description of other features of these systems and a
comparison with existing annulenes [23].

In Section 2 we briefly describe the Pariser-Parr-Pople
Hamiltonian that is employed in this study and in Sec-
tion 3 we recall some basics theorems concerning HF so-
lutions in the fully correlated limit (β = 0), which are
helpful in interpreting our results, presented in Section 4.
Concluding remarks are then given in Section 5.
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2 Pariser-Parr-Pople Hamiltonian

We employ a semiempirical Pariser-Parr-Pople (PPP)
Hamiltonian [24,25] which was initially developed for the
description of planar π-electron systems with conjugated
double bonds. This Hamiltonian represents a generaliza-
tion of the Hubbard Hamiltonian – that is often used in
solid-state physics – since it replaces the on-site Coulomb
interaction of the latter by a more realistic long-range in-
teraction. Its general form is (see, e.g., Ref. [25])

HPPP =
∑

µ

αµ +
∑

µ,ν

′
βµνEµν

+
∑

µ<ν

γµν(Eµµ − Zµ)(Eνν − Zν)

+
1
2

∑

µ

γµµEµµ(Eµµ − 1), (3)

where the summation indices µ and ν label the atomic
sites of the system, the prime on the second summa-
tion symbol indicates that the sum extends only over
the σ-bonded nearest neighboring sites (the tight-binding
approximation), αµ and βµν are the so-called Coulomb
and resonance (or hopping) one-electron integrals, and
γµν ≡ 〈µν|v|µν〉 represents the two-electron Coulomb in-
tegral involving sites µ and ν. Further, Zµ designates the
number of π-electrons contributed by the µth atomic site
(for neutral, unsaturated hydrocarbons with conjugated
double bonds Zµ = 1). Finally, the operators Eµν rep-
resent the generators of the orbital unitary group U(N),
with N designating the number of atomic sites and of the
corresponding symmetrically-orthonormalized 2pz carbon
atomic spinorbitals |µσ〉, µ = 1, · · · , N and σ = ± 1

2 (see
Ref. [25] for more details), namely

Eµν =
∑

σ

X†
µσXνσ, (4)

with X†
µσ (Xνσ) designating the creation (annihilation)

operators defined on the spin-orbital set {|µσ〉}.
In the case of neutral hydrocarbons the one-center in-

tegrals are all identical, i.e. αµ ≡ α and γµµ ≡ γ11, so that
without any loss of generality we can define the origin of
our energy scale by setting α = 0, and thus simplify the
PPP Hamiltonian as follows [25,26]:

HPPP =
∑

µ,ν

′
βµνEµν +

1
2

∑

µν

γµνEµµ(Eνν − 1). (5)

Moreover, since all the C–C bondlengths in our model
are kept identical, all the βµν integrals are the same, so
that we can set βµν ≡ β. Thus, the semiempirical pa-
rameters specifying the PPP Hamiltonian are reduced to
the resonance integral β, whose spectroscopic value is
usually set to –2.4 eV, and the two-electron Coulomb
integrals γµν . For the latter, we employ the Mataga-
Nishimoto parametrization [27], representing essentially
a point-charge Coulomb interaction between the electrons

on sites µ and ν, modified in such a way that for the
on-site interaction we obtain γ11, whose value is given by
the difference between the valence state ionization poten-
tial and electron affinity for the 2pz carbon atomic orbital
(Goeppert-Mayer and Sklar approximation). We thus have
that γ11 = 10.84 eV, while the other Coulomb-repulsion
integrals are given by the formula

γµν(Rµν) =
e2

Rµν + a
, (6)

where a = e2

γ11
. This approximation represents an inter-

polation between the finite γ value for Rµν = 0 and the
standard point-charge Coulomb repulsion for Rµν → ∞.
We note that by setting γµν = 0 for µ �= ν and γ11 = U ,
we obtain the Hubbard Hamiltonian. The studied systems
can then be explored in the whole range of the coupling
constant (proportional to 1

β ) by varying the resonance in-
tegral β from 0 to −∞ (in actual calculations reached
at about –5 eV, the physical region corresponding to the
spectroscopic value of β = −2.4 eV), while keeping the
γµν integrals fixed.

3 Some basics theorems

Let us first recall some simple theorems [4] for π-electron
systems with conjugated double bonds which a priori tell
us whether the singlet instability can, in principle, arise for
sufficiently large coupling constants or whether the RHF
solution for a given system will always be stable.

We start with the definition of Kekulé or Dewar solu-
tions that are associated with the corresponding valence-
bond (VB) structures. These are formed by introducing n
“bonds” between all possible 2n atomic sites of a system
with conjugated double bonds. For Kekulé VB structures
these bonds occur only between σ-bonded nearest neigh-
bors. The wave function Φ that we associate with each VB
structure is then represented by a single antisymmetrized
product of n doubly occupied ethylene-like molecular or-
bitals ψi,

|ψi〉 = (|µ(i)〉 + |ν(i)〉)/
√

2, (7)

where µ(i) and ν(i) label the sites associated with the ith
bond of a given VB structure. Clearly, |µσ〉 = |µ〉|σ〉. Thus

Φ = det ‖ψ1α, ψ1β, ψ2α, ..., ψnβ‖, (8)

with α and β now labeling the spin-up (σ = 1
2 ) and spin-

down (σ = − 1
2 ) functions, respectively. With these defini-

tions in hand, the relevant basic properties of the Kekulé
and Dewar solutions Φ in the fully correlated limit (β = 0)
can be characterized as follows [4].

Theorem 1. Any Kekulé or Dewar solution represents an
exact RHF solutions in the fully correlated limit of β = 0.

Theorem 2. The total π-electron energy of any Dewar
solution is higher than the energy of any Kekulé solution.

Theorem 3. In the fully correlated limit β = 0, all Kekulé
solutions are degenerate and their energy represents the
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Fig. 1. The structure (a) describes the SA RHF solution for
p-naphthalene in the fully correlated limit (β = 0). For this
structure the site numbering is also indicated. Diagrams (b)
and (c) then correspond to two possible Kekulé structures rep-
resenting degenerate BS solutions in the fully correlated limit.

absolute minimum of the energy in the variational space
that is spanned by all single determinantal wave functions
with doubly occupied orbitals.

These theorems can be easily proved as shown in the
appendix of reference [4]. Theorem 3 then implies that if
any SA RHF solution for β = 0 has the form of a Kekulé
solution Φ, equations (7) and (8), it must necessarily be
singlet stable in the whole range of the coupling constant,
since the nonzero one-body component of the Hamiltonian
(i.e., non-zero β) can only increase its stability. This in
turn leads to the following Corollary.

Corollary. Let the symmetry of the π-electron Hamilto-
nian of a system with conjugated double bonds be charac-
terized by a point group G. If there exists a Kekulé struc-
ture having the same point group symmetry G, then the
SA RHF solution of a given system is always stable. How-
ever, if all the Kekulé structures have a lower symmetry
G

′
, where G

′
designates a proper subgroup of G, then the

SA RHF solution may become singlet unstable in some re-
gion of the coupling constant, namely for 0 ≤ |β| ≤ |βcrit|.

4 Results

Let us first point out the implications of the above stated
theorems for the case of p-naphthalene and p-anthracene.
The SA solution for p-naphthalene in the fully correlated
limit (β = 0) is shown schematically in Figure 1a. It rep-
resents a fully symmetric D2h solution, which is an ex-
act RHF solution for β = 0 (see Th. 1). It is important
to note here that for β = 0 the Hamiltonians for the p-
naphthalene and an ordinary naphthalene are identical.
This explains the presence of the strong bond across the
ring. The two Kekulé structures for p-naphthalene, shown

Fig. 2. The structure (a) describes the SA RHF solution for p-
anthracene in the fully correlated limit. For this structure the
site numbering used in the text is shown. The Kekulé structures
(b)–(e) then represent degenerate BS solutions for this system
in the fully correlated limit.

in Figures 1b and 1c, then correspond to BS RHF solu-
tions. All three solutions are degenerate at β = 0 (see
Th. 3).

The corresponding picture for p-anthracene is shown in
Figure 2. The SA RHF solution at β = 0 is now schemat-
ically represented in Figure 2a and will be discussed later
on. The solutions shown in Figures 2b–2e then represent
all possible Kekulé solutions for p-anthracene at β = 0.
Clearly, none of these structures possesses the D2h sym-
metry of the Hamiltonian, since these structures, and the
corresponding RHF solutions, have broken C2v symmetry.
Consequently, the SA RHF solution may become unstable
for some values of β (see the Corollary).

A similar situation is found for cyclic polyenes CNHN

for anyN = 2n = 4ν+2, in which case no Kekulé structure
has the DNh symmetry of the Hamiltonian (or of the cor-
responding SA RHF solution), but has a lower Dnh sym-
metry instead. This is illustrated for C10H10 in Figure 3.
Thus, the SA RHF solution for these systems is bound to
become singlet unstable in some interval 0 ≤ |β| ≤ |βcrit|
of the resonance integral β.

The SA RHF solutions for linear polyacenes are al-
ways singlet stable when they involve an even number of
benzene rings, since these systems possess a fully symmet-
ric D2h Kekulé structure (see Ref. [4] and the Corollary),
while the opposite is the case for linear polyacenes hav-
ing an odd number of benzene rings. Thus, the SA RHF
solutions for naphthalene, having two benzene rings, are
always singlet stable, while for anthracene, with three ben-
zene rings, there will be a region 0 ≤ |β| ≤ |βcrit| of sin-
glet instability. As we shall see later on, we find a rather
different behavior for the corresponding perimeter models
(p-polyacenes), even though the qualitatively different na-
ture of the SA RHF solutions for linear polyacenes having
an even or an odd number of benzene rings will also be
reflected in the behavior of their p-versions, particularly
in the vicinity of the fully correlated limit β = 0. In view
of a qualitatively different behavior of the RHF solutions
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Fig. 3. The structure (a) describes the SA RHF solution for
the C10H10 cyclic polyene in the whole range of the coupling
constant, including the fully correlated limit. The Kekulé struc-
tures (b) and (c) then represent two degenerate BS solutions
in the fully correlated limit.

for linear polyacenes having an even or an odd number
of benzene rings, we shall refer to them as even and odd
polyacenes, respectively. For the simplicity’s sake, we will
also use the same terminology for their p-analogues, while
referring to cyclic polyenes simply as polyenes.

Moreover, we have shown in reference [23] that there
is only a very slight dependence of |βcrit| on the size N
of polyacenes (|βcrit| being practically constant when in-
creasing N), while |βcrit| increases rapidly with increasing
N for p-polyacenes, and even more rapidly for polyenes
(reaching the spectroscopic value of β for N ≈ 34 and 26,
respectively; see Fig. 2 of Ref. [23]). In general we have
that

|βcrit(polyacene)|< |βcrit(p−polyacene)|< |βcrit(polyene)|.
(9)

This fact is necessarily reflected in the energy gap between
the highest occupied and the lowest unoccupied orbital en-
ergies (HOMO-LUMO gap) of the respective SA solutions.
This is illustrated in Figure 4 where we plot the HOMU-
LUMO gap for anthracene, p-anthracene, and C14H14 as
a function of β. A much stronger tendency towards insta-
bility for the N = 14 polyene as compared with the other
two systems is clearly related to its much smaller HOMO-
LUMO gap. We also observe that in the β = 0 limit, the
HOMO-LUMO gaps for anthracene and p-anthracene be-
come identical, since there is no difference between their
π-electron Hamiltonians in this limit, as already pointed
out above.

It can also be shown that the energy difference ∆E =
ESA

0 − EBS
0 between the energies of the SA and BS RHF

solutions, which is defined and positive in the region of
singlet instability (since the BS solution has a lower en-
ergy than the SA one), monotonically increases with de-
creasing |β| for polyenes, reaching its maximum at β = 0.
However, for distorted polyenes we find a different behav-
ior. Although initially, starting at βcrit, the energy differ-

Fig. 4. (Color online) The energy gaps between the highest oc-
cupied and the lowest unoccupied molecular orbitals (HOMO-
LUMO gaps) for anthracene, p-anthracene, and the C14H14

cyclic polyene as a function of the resonance integral β.

ence ∆E increases with decreasing |β| value, it eventually
reaches its maximum and decreases towards zero at β = 0
in the case of p-naphthalene, while reaching a finite value
at β = 0 for p-anthracene, which is identical with that
for anthracene (see Fig. 5). This behavior is easily under-
stood when we realize that at β = 0 the Hamiltonians
for polyacenes and their perimeter analogues are identi-
cal, and that the SA RHF solutions for even polyacenes
is always stable and its energy at β = 0 is given by any
Kekulé structure [23].

Another interesting feature is revealed when we con-
sider the dependence of the lowest root λmin of the singlet
stability problem for the SA RHF solution on the reso-
nance integral β (see Fig. 6). While for N = 10 polyene
λmin decreases linearly with |β|, reflecting an increasing
instability of the SA solution when approaching the fully
correlated limit, for p-naphthalene we find a region near
β = 0 where no singlet instability is present. In order to
understand this peculiar behavior of the SA RHF solu-
tions for p-naphthalene, it is instructive to examine the
mean-energy hypersurface E(Φ), equation (1), for differ-
ent values of the resonance integral β. This energy hyper-
surface for both the N = 10 polyene and p-naphthalene is
schematically represented in Figure 7 as a one-dimensional
plot along a hypothetical coordinate in the variational
manifold passing through the BS and SA solutions. The
lowest root λmin may be though of as representing the
curvature of the respective stationary points along this
coordinate.

Considering first the C10H10 polyene, we find that at
β = 0 we have two degenerate BS solutions (indicated by
1 and 2 in Fig. 7 and depicted in Fig. 3, diagrams 3b and
3c), as well as the unstable SA solution (designated by 0
in Fig. 7 and depicted in Fig. 3a), separated by the energy
difference of approximately 1.01 eV. The respective solu-
tions are best characterized by the corresponding bond
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Fig. 5. The energy difference ∆E = ESA
0 − EBS

0 between
the SA and BS solutions for various structures as a function
of the resonance integral β. The curves 1 and 2 correspond
to the C14H14 and C10H10 cyclic polyenes, respectively. The
curves 3 and 4 correspond, respectively, to p-anthracene and
anthracene, and merge into a common finite value in the fully
correlated limit. For p-naphthalene (curve 5) ∆E vanishes for
β = 0. The critical values βcrit are also listed in the figure for
each case. See the text for details.

orders pµ,ν ,
pµ,ν = 2

∑

i

Ci,µCi,ν , (10)

where the sum extends over all occupied molecular orbitals
(MOs) and Ci,µ designates the coefficient in the expan-
sion of the MO ψi in terms of the atomic orbitals (AOs)
χµ ≡ 〈r|µ〉,

ψi =
∑

µ

Ci,µχµ. (11)

Since the MOs of the highly-symmetric C10H10 polyene
are fully determined by its D10h symmetry for any value
of β, all the bond orders have the same constant value
pµ,µ±1 = 0.64, µ = 1, · · · , N(mod N). When |β| increases,
the energy difference between the two degenerate BS so-
lutions and the SA solution decreases, and vanishes at
|β| = |βcrit| = 0.889 eV, at which point the SA solution
becomes stable. For |β| > |βcrit| only this SA solution ex-
ists.

For p-naphthalene the circumstances are more in-
volved. At β = 0, the two BS solutions (labeled as 1
and 2 in Fig. 7; see also Figs. 1b and 1c) and the SA
solution (designated by 0 in Fig. 7, see also Fig. 1a) are
all degenerate. As we proceed from the fully correlated
limit by increasing the |β| value, the SA solution remains
stable (λmin > 0) till about β ≈ −0.2 eV, when the lo-
cal minimum corresponding to the SA solution disappears
and changes into a local maximum (i.e., λmin becomes
negative), so that for |β| � 0.2 eV the SA solution be-
comes unstable as in the polyenic case. With a further
increase of |β| the energy difference between the SA and
BS solutions steadily diminishes in much the same way
as for the corresponding polyene (cf. Fig. 7), and for

Fig. 6. The dependence of the lowest-lying roots λmin of
the singlet stability problem for the SA and BS solutions of
p-naphthalene (full lines) and C10H10 cyclic polyene (dotted
lines) as a function of the resonance integral β. In each case
the curves corresponding to the BS and SA solutions merge at
the critical value of the resonance integral βcrit (see Fig. 5).
For |β| > |βcrit| only SA solutions exist.

Fig. 7. A schematic representation of the cut of the variational
mean-energy hypersurface E(Φ), equation (1), passing through
the two degenerate BS solutions (labeled by 1 and 2) and the
SA solution (labeled by 0) of the C10H10 cyclic polyene (left
panel) and of p-naphthalene (right panel) for typical values of
the resonance integral β. See the text for details.



G. Thiamová and J. Paldus: Independent particle model of spontaneous symmetry breaking 459

Fig. 8. Energies of occupied RHF molecular-orbitals of p-
naphthalene (full lines) and of the C10H10 cyclic polyene (dot-
ted lines) as a function of the resonance integral β. Note that
due to the D10h symmetry of the C10H10 cyclic polyene there
is a double degeneracy of the two highest molecular orbitals.
This degeneracy is lifted in p-naphthalene.

|β| > |βcrit| = 0.637 eV the BS solutions disappear al-
together and only the SA solution exists. Thus, as the
π-electron Hamiltonian for p-naphthalene approaches that
of naphthalene when β → 0, not only the energy difference
∆E = ESA

0 −EBS
0 for p-naphthalene tends to zero, but also

the SA solution for p-naphthalene stabilizes within a small
neighborhood of the fully correlated limit.

The above presented results clearly demonstrate that
a deformation of the nuclear framework of cyclic polyenes
has interesting consequences in the region of small val-
ues of β. Of course, we will observe the same phenomenon
even for physical (spectroscopic) values of parameters once
we consider larger systems, as implied by the fact that
the critical value of |β| steadily increases with increas-
ing size of the polyenes N . The above presented phenom-
ena are also reflected in the behavior of the MO ener-
gies (see Fig. 8 for occupied MOs). For N = 10 polyene
these MO energies depend linearly on β, while those for p-
naphthalene approach the same value of 14.3 eV as β → 0.
This can be understood when we realize that at β = 0
the SA solution for p-naphthalene factorizes into the five
ethylene-like solutions, so that the energy of all five occu-
pied MOs of p-naphthalene approaches the energy of the
single occupied ethylenic MO, whose orbital energy is pre-
cisely 14.3 eV (and similarly for the corresponding virtual
MOs). For large values of |β|, the two-electron component
of the Hamiltonian plays less and less important role as
it approaches the Hückel uncorrelated limit and the MO
energies behave in the same way as for highly symmetric
polyenes (note that the geometry of the nuclear framework
is irrelevant in the Hückel limit, where only the topological
incidence matrix is decisive).

It remains to clarify the behavior that is observed
for p-anthracene as the system approaches anthracenic
structure in the β → 0 limit and, in particular, the ear-

lier mentioned character of its SA solution in this limit.
We already know that anthracene, with its odd number
(i.e., three) of benzene rings, has a nonvanishing region
of singlet instability for its SA RHF solution. The lowest
root λmin of the p-anthracene stability problem, shown
in Figure 9 as a function of |β|, remains negative for
|β| < |βcrit| = 0.986 eV as we approach the fully cor-
related limit, even though its dependence on |β| is not
monotonic as in the case of N = 10 polyene.

In order to elucidate the character of the SA solution
for p-anthracene in the fully correlated limit, we present
in Table 1 the values of essential bond orders (for the
site numbering see Fig. 2a) for both the SA and BS so-
lutions for several values of β in the neighborhood of the
fully correlated limit. We see that at β = 0 the SA solu-
tion factorizes into a benzene-like solution (cf. bond orders
9,12sa and 12,13sa) and four ethylene-like solutions, as in-
dicated schematically in Figure 2a. This also explains why
we find a finite energy difference ∆E ≈ 0.3 eV at β = 0,
since this is the energy difference between the energy of
a BS solution of benzene with alternating bond orders of
magnitude 0 and 1 and the energy of a SA solution of
benzene with constant bond orders pµ,µ±1 = 0.66. Since
at β = 0 the π-electron Hamiltonians of anthracane and
p-anthracene are identical, the energy difference between
the SA and BS solutions of anthracene goes to the same
value ∆E ≈ 0.3 eV.

We observe that, in general, the behavior of the π-
electron energy of SA and BS solutions for various p-
versions of polyacenes depends critically on the even-
ness or oddness of the number of constituting benzene
rings. Those with an even number of rings behave very
much like the above presented case of naphthalene and p-
naphthalene, whose SA solutions at β = 0 coincide and are
characterized by the symmetric Kekulé structure, while
those with an odd number of benzene rings, exemplified
by anthracene and p-anthracene, tend towards a “quasi-
Kekulé” structure at β = 0 with the benzenoid ring in the
middle that is surrounded by ethylenic fragments [23].

5 Conclusions

In this work we examine the symmetry breaking effects at
the Hartree-Fock level of approximation for the π-electron
models of p-naphthalene and p-anthracene, which result
by a systematic deformation of the nuclear framework
of highly symmetric C10H10 and C14H14 cyclic polyenes.
Similar properties for cyclic polyenes CNHN , N = 4ν+2,
were thoroughly investigated in several papers earlier (cf.,
e.g., Refs. [2,7]). In this case the SA RHF solutions be-
come singlet unstable for sufficiently small values of the
resonance integral |β|, which steadily increases with the
size of the polyene ring N , implying the existence of BS
RHF solutions with lower energy. Those BS solutions hav-
ing the lowest energy possess the Dnh, n = N/2, symme-
try and are characterized by alternating bond orders (see
Figs. 3b and 3c).

Let us recall that the existence of the above men-
tioned BS solutions implies a tendency towards the actual
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Table 1. Bond orders pµ,ν of the SA solution (denoted as µ, νsa) and of the BS solution (µ, νbs) of p-anthracene for several
values of the resonance integral β (in eV) in the range of singlet instability (βcrit = −0.986 eV). The labeling of bonds is shown
in Figure 2a.

β 9,12sa 1,12sa 1,2sa 2,3sa 12,13sa 9,12bs 1,12bs 1,2bs 2,3bs 12,13bs 9,11bs 8,11bs 7,8bs 6,7bs 11,14bs

−0.5 0.647 0.530 0.760 0.545 0.371 0.930 0.264 0.922 0.304 0.068 0.264 0.898 0.355 0.887 0.201
−0.4 0.655 0.471 0.810 0.483 0.426 0.951 0.222 0.943 0.261 0.043 0.220 0.927 0.301 0.917 0.162
−0.3 0.667 0.365 0.884 0.371 0.504 0.969 0.178 0.962 0.214 0.023 0.176 0.953 0.241 0.946 0.117
−0.2 0.676 0.232 0.951 0.237 0.577 0.983 0.129 0.979 0.160 0.009 0.128 0.966 0.173 0.971 0.069
−0.1 0.677 0.109 0.988 0.113 0.628 0.995 0.072 0.993 0.092 0.001 0.072 0.993 0.096 0.991 0.024

−0.001 0.667 0.001 1 0.001 0.666 1 0.001 1 0.001 0 0.001 1 0.001 1 0

Fig. 9. The dependence of the lowest-lying roots λmin of the
singlet stability problem for the SA and BS solutions of p-
anthracene (full lines) and C14H14 cyclic polyene (dotted lines)
as a function of the resonance integral β.

distortion of the nuclear framework in which the C–C
bond lengths are no longer identical [28]. Indeed, one can
show [8,28] that a distortion that is “in-phase” with the
charge density wave (as given by the bond-order matrix) of
one of the BS solutions will further lower the energy, while
the “out-of-phase” one will increase it. Thus the resulting
potential energy curve (PEC) as a function of the distor-
tion parameter ∆ (given, e.g., by the difference between
the alternating longer and shorter C–C bond lengths in a
distorted structure) will have a finite slope at the undis-
torted geometry∆ = 0, and the two PECs associated with
two modes of distortion that correspond to the two degen-
erate BS solutions will intersect at a finite angle, forming
a double well PEC [8,28]. Since |βcrit| increases rapidly
with the increasing number of atomic sites N , reaching
its physical (spectroscopic) value of about −2.4 eV for
N ≈ 26 or 30 (depending on the parametrization em-
ployed), this phenomenon implies the actual distortion or
bond-length alternation in long polyenic chains as exper-
imentally observed in polyacetylene. Indeed, adding the
σ-energy component, one arrives to an experimentally de-
termined distortion of ∆ ≈ 0.04 or 0.05 Å [8,28].

Both p-naphthalene and p-anthracene have D2h sym-
metry and result by a distortion of the DNh polyenes with
N = 10 and 14, respectively. In general, a lowering of the

symmetry of the nuclear framework brings about a lower-
ing of the critical value |βcrit|, i.e., the region of the β val-
ues in which the singlet unstable SA RHF (and thus BS)
solutions exist is significantly smaller than for polyenes,
yet much larger than for the corresponding odd polyacenes
(even polyacenes being always stable). Nonetheless, this
region of instability persists as long as there remains some
symmetry to be broken [23].

We find that in contrast with the C10H10 cyclic
polyene, in which case the energy difference between the
BS and SA solutions monotonically increases when we ap-
proach the fully correlated limit, this energy difference
vanishes at β = 0 in the case of p-naphthalene (see Fig. 5).
This is related to the fact that the SA RHF solutions for
even polyacenes are always stable. Moreover, the SA so-
lution for p-naphthalene stabilizes in the vicinity of the
fully correlated limit (see Fig. 6), again in contrast to the
N = 10 polyene, in which case the singlet instability of
its SA solution persists all the way to the fully correlated
limit. Similar conclusions hold for the p-versions of larger
polyacenes.

An entirely different situation is found for anthracene,
representing odd polyacenes, and for its p-analogue. The
SA RHF solutions for both systems are singlet unstable in
the finite region 0 ≤ |β| ≤ |βcrit|, and the energy difference
∆E = ESA

0 − EBS
0 between the SA and BS solutions for

p-anthracene tends towards the same finite value of 0.3 eV
when β → 0 as does ∆E for anthracene (see Fig. 5). In-
deed, this is the same energy difference ∆E that is found
between the SA solution for benzene (characterized by
constant bond orders pµ,µ±1 = 2

3 , see Fig. 2) and the BS
solution consisting of three ethylenic fragments (charac-
terized by alternating bond orders 0 and 1). Again, we
find the same results for larger odd polyacenes and p-
polyacenes [23]. Since no D2h Kekulé structure exists for
these systems, the SA solution in the fully correlated limit
always consists of a central benzenic ring surrounded by
ethylenic fragments. Consequently, the energy difference
∆E at β = 0 for odd polyacenes and p-polyacenes is al-
ways the same, regardless the size of the system [23].

In summary, the study of cyclic polyenes and of their
distorted versions, particularly those representing perime-
ter models of linear polyacenes (p-polyacenes), shows the
essential role played by the symmetry when exploring
their respective BS and SA RHF solutions and their
properties. A more detailed study in reference [23] re-
veals that quite unexpected properties of those solutions
propagate to much larger hydrocarbons with conjugated
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double bonds. Moreover, a seemingly hypothetical struc-
tures like p-polyacenes do actually exist, since their ge-
ometric framework can be stabilized with methylenic or
similar bridges, and many of these so-called [n]-annulenes
were studied in great detail experimentally. For the rel-
evance of our study for a better understanding of these
systems we refer the reader to reference [23].

Continued support by NSERC (J.P.) is gratefully
acknowledged.
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3. J. Paldus, J. Č́ıžek, J. Chem. Phys. 52, 2919 (1970); Chem.

Phys. Lett. 3, 1 (1969)
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19. M. Alcami, O. Mó, M. Yáñez, I.L. Cooper, J. Chem. Phys.
112, 6131 (2000); G. Orlova, J.D. Goddard, Chem. Phys.
Lett. 363, 486 (2002)

20. A. Görling, Phys. Rev. A 47, 2783 (1993); J.P. Perdew, A.
Savin, K. Burke, Phys. Rev. A 51, 4531 (1995)

21. E. Räsänen, H. Saarikoski, M.J. Puska, R.M. Nieminen,
Phys. Rev. B 67, 035326 (2003)

22. B. Weiner, S.B. Trickey, Int. J. Quantum Chem. 69, 451
(1998)
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